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The problem of detecting a completely known coherent optical signal in a thermal 
back~ound radiation is considered. The problem is a quantum mechanical analog of 
detection of a known signal in Gaussian noise. The quantum detection counterpart is 
formulated in terms of a pair of density operators and a solution is shown to exist. 
A perturbation solution is obtained by making use of a reproducing kernel Hilbert 
space of entire functions. The solution is particularly applicable to optical frequencies, 
where the effect of thermal radiation is small, and it is shown to converge to known 
results at zero thermal radiation. Curves are generated showing the detectability limit 
at optical frequencies. Also considered is the problem of finding an operator that 
maximizes a signal-to-noise ratio, defined for quantum detection in analogy with the 
classical theory. For a coherent signal with random phase, the operator that maximizes 
the signal-to-noise ratio is identicial to the one obtained by applying the Neyman- 
Pearson criterion, thereby establishing a complete analogy with the classical detection 
theory. For a signal with known phase, however, the analogy breaks down in the limit 
of zero thermal radiation. In that case, it is shown that an operator that maximizes 
the "classical" signal-to-noise ratio does not exist. 

KEY WORDS: Signal detection; detection theory;  quantum statistics; optical signal; 
thermal radiation ; coherent optics ; signal-to-noise ratio. 

1. I N T R O D U C T I O N  

T h e  poss ib i l i ty  o f  us ing  lasers in i n t e rp l ane t a ry  c o m m u n i c a t i o n  sys tems has  s t imu la t ed  

recen t  r e sea rch  in the  de t ec t ion  a n d  e s t ima t i on  t h e o r y  o f  signals a t  op t ica l  f requencies .  

I n  par t icu la r ,  H e l s t r o m ' s  w o r k  ~1-~ la id  the  f o u n d a t i o n  fo r  the  d e v e l o p m e n t  o f  a 

r i go rous  c o m m u n i c a t i o n  t h e o r y  o f  op t ica l  signals. 
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A new theory of signal detection is needed at optical frequencies in the same way 
in which quantum mechanics was needed to complement classical mechanics. The 
conventional signal detection theory of frequencies up to microwaves corresponds 
to classical mechanics in that the theory could ignore the effects of the uncertainty 
principle. At optical frequencies, as in quantum mechanics, the uncertainty principle 
imposes a limitation on the precision achievable in a simultaneous measurement. 
This lack of precision may be incorporated as receiver noise. For example, the noise 
power density of an ideal linear amplitude or phase detector is ~51 

S(f) = hf/(e hs/kT- 1) 

where h is Planck's constant, k is Boltzmann's constant, T is absolute temperature, 
andf is  the frequency. The first factor is thermal noise and the second factor is quantum 
in origin. At small f such that h f ~  kT, the thermal noise dominates. At high 
frequencies such that hf>~ kT, the "quantum" noise dominates over the thermal 
noise. At ordinary temperatures, the frequency that separates "quantum" region 
from "thermal" region occurs at 1013 Hz, in the infrared specturm. Thus, if a detection 
theory is to be successful at optical frequencies, it is clear that the theory must take 
into account the quantum nature of signal and noise. 

In the following, we consider the detection problem in quantum mechanics as 
posed by Helstrom.(2) While it is not the only consistent way to formulate the problem, 
it is appealing in its simplicity and similarity to the classical formalism. In Section 2, 
we formulate the general quantum detection problem with some care and show that 
a solution exists. Within this formalism, we wish to consider the problem of detecting 
a coherent, completely known signal in background thermal radiation. This, according 
to Helstrom, (6) is "an outstanding unsolved problem of quantum detection theory." 
We are interested in this problem because its solution gives the upper limit of our 
ability to communicate using a coherent optical source such as the laser. 

In Section 3, we introduce some of the background material for the problem 
and indicate where the difficulty of the problem lies. We also show how the Hilbert 
space of entire functions follows naturally from a consideration of a coherent signal 
and show some properties of the space, among them, the all-important reproducing 
property. 

By repeatedly using the reproducing property, we solve the problem in steps 
in Section 4. First, we solve the case of zero thermal radiation and show that the 
solution is exactly the one obtained earlier by Helstrom by a different approach. 
We then generalize this solution to derive an algorithm that is capable of complete 
solution. We present some numerical results applicable to optical frequencies, where 
the contribution due to thermal radiation is small. 

In Section 5, we consider the problem of finding an operator that maximizes a 
signal-to-noise ratio, which Helstrom defined by analogy to the classical theory. ~) 
For a coherent signal of random phase, we find that the operator that maximizes 
the signal-to-noise ratio is identical to the one obtained by applying the Neyman- 
Pearson criterion. We find a corresponding operator for a coherent known signal 
of small amplitude. In the limit of zero thermal radiation, we show that an operator 
that maximizes the signal-to-noise ratio does not exist. 
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2. B I N A R Y  D E T E C T I O N  I N  O U A N T U H  S T A T I S T I C S  

The classical detection theory can be considered an application of the hypothesis 
testing formalism ~v,8) Helstrom (2~ showed that the quantum detection problem can 
also be posed as one of hypothesis testing. To see the parallel between the two, the 
classical theory is reviewed briefly. 

The detection of a known signal in noise is a binary hypothesis testing problem 
in that we observe some output X of the receiver and decide either: H~, signal is 
present; or H0, the output contains noise only. The value X attains on measurement 
is determined by the conditional distribution Fo(X), which depends on a real param- 
eter 0. In the following, we consider the two hypotheses to be simple, i.e., the distri- 
bution of X under hypothesis Hi is determined completely by Fo=o~(X), where the 
parameter 0 takes on the value 0i �9 

The classical hypothesis testing procedure directs us to find a best decision 
function r (9~ The domain of r is the sample space and its range is the [0, 1] 
interval. The interpretation of r is that, if X = x is observed, we choose H~ with 
probability r It follows that we must choose H o with probability 1 -- r 
The probability of deciding a signal is present when actually there is none is the 
probability of false alarm, given by 

Qo -= Eo=oo(~(X) ~ E0r = j r dF0(x) 

The probability of correctly deciding that a signal is present is 

r  

Q1 = Eo=o1r =-- EIr = J r dFl(X ) 

Which decision rule is "best" obviously depends on the criterion used. The two 
most common are the Bayes criterion, which seeks to minimize the average cost 
of making a wrong decision, and the Neyman-Pearson criterion, which maximizes Q~ 
for a given Q0. To apply the Bayes criterion, the prior probabilities of H0 and / /1  
and the relative cost of making a wrong decision must be known. It cart be shown 
(Helstrom, 12~ p. 261) that the detection problem reduces to one of maximizing the 
functional 

E ~ r  AEor ) (1) 

by choosing r that satisfies the constraint 0 ~< r ~< 1. 
If  the Neyman-Pearson criterion is used, we fix the false alarm probability E0r ) 

at some level al and try to find a function r which maximizes the detection probability 
EIr ). Introducing the Lagrangian multiplier A, we again maximize EIr ) - AE0r ) 
subject to the same constraint as above. 

The problem is further developed by assuming some distribution of random 
variable X, but for our purposes we need not take the problem any further. It is 
sufficient to note at this point that the classical detection problem may be formulated 
as one of maximizing a linear functional (1) subject to a positivity constraint. 

In the discovery of quantum mechanics, the classical mechanics served as a 
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guide in developing new theories. In the same way, we look to the classical signal 
detection theory to guide us in building a quantum statistical theory of signal 
detection. Helstrom (a) constructed such a theory by closely adhering to the formalism 
of classical hypothesis testing. We shall now reconstruct his theory and show the 
consistency of his formulation. 

In quantum mechanics, the set of variables characterizing a given physical 
system is put in a one-to-one correspondence with a set of self-adjoint operators. 
Defining the state of a physical system is equivalent to measuring all the variables 
corresponding to the operators in a certain compatible set. This set is compatible 
in that all the operators commute with each other and the set is complete in the sense 
that there exist no other operator that commutes with each in the set. 

The space on which these operators act is assumed to be a separable Hilbert 
space, H. The elements of H are vectors I x} and H is complete in the metric generated 
by the inner product (x [ y}. The space H is defined in such a way that all operators 
representing physical observables have eigenvectors that span H. a~ 

If  an operator A corresponds to an observable and the system is in some known 
state I e}, the average value of A is given by (A} = (e t A [ e}. Often, the state of 
the system is incompletely known and admits only a statistical description. For 
example, we may only know that the system is in state I e~} with probability p~. 
In that case, the average of A is given by the trace of A, i.e., 

(A} = ~pk(ek 1A {ek} = Tr ~ p k  i e~}(e~ I A 
k /~ 

= Tr pA 

where p is a density operator given by Zz:Pk I ek}(e~ J. Such a representation of p 
in terms of a complete orthonormal set {1 e~}} is possible because H is separable, m) 
Moreover, Tr pA thus defined is independent of the basis l ek}. m'l~) We list some 
properties of a density operator. First, a density operator is bounded. For any If} in H, 

[,P If}i] e ~< ~P~  [(f l  e~}l 2 ~< ~ [(/I  e~}l e = I[ [f}ll 2 
k k 

Second, it is positive since 

( f [  P l f )  = 2 P ~  l ( f l  ee}l ~ ~> 0 
k 

Third, its trace is unity, 

Tr p = ~ pk(e1~ [ ek} = ~ PT~ = 1 
k k 

The positivity of p and the fact that it has unity trace confirm our suspicion that 
operator Tr po(') is analogous to the expectation Eo(') of the classical statistics. 
We rely on this analogy to build a quantum statistical theory of signal detection. 

To solve the classical hypothesis testing problem, it was sufficient to find a best 
decision function ~(X), a mapping from the sample space to the [0, 1] interval. In 
quantum statistical hypothesis testing, the sample space is the set of complete 
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compatible operators mentioned earlier. In analogy with classical hypothesis testing, 
we seek a mapping from the set of  compatible operators to [0, 1]. This mapping 
must also be an observable just as r was a random variable. We consider, in 
place of  r an observable represented by a self-adjoint operator 7r, which is a 
function of the compatible operators such that all of  its eigenvalues are in [0, 1]. 
Then, the probability of  false alarm is 

Qo = Tr po=oorr = Tr p0rr 

and the probability of  detection is 

Q i  = Tr Po=oJr ----- Tr pl'n" 

Since zr represents an observable, it has a complete orthonormal set of  eigenvectors 
[ u~> corresponding to eigenvalues ~k �9 Then, for any I f> in H of norm 1, we have 
I f> = Zkfk  ] Uk>, where ~2k [fk 12 = 1, and since 0 ~</~ ~< 1 for all k, 

0 ~ < ( f I ~ r j f >  = ~ l f k l  2 ~< 1 

Carrying the analogy with classical hypothesis testing a step further, we say 
that the quantum mechanical counterpart is to find a self-adjoint operator 7r such that 

Tr plzr --  ) Tr po~r (2) 

is maximized subjected to the constraint that 

0 ~< ( f [  zr [f> ~< 1 (3) 

for any l f >  of norm 1. 
The problem is still much too general to be handled, and to make further progress, 

we appeal to the theory of trace-class operators in H. Trace-class or nuclear operators 
are a subclass of Hilbert-Schmidt operators having finite trace. Density operators, 
by virtue of  their unity trace, belong to it. The trace-class operators form a normed 
linear space over the reals and a product of a trace-class operator and a bounded 
operator is again trace-class. (a~) 

Since density operators pl and P0 are trace-class and ~r is a bounded operator, 
pvr  and p07r are trace-class. Hence, so is (Pl - -  AP0) ~r, h being a positive real parameter. 
I t  follows that the evaluation of Tr(p 1 - -  hpo ) ~r is independent of the basis used. 
We chose to compute Tr(pz --  )Po) ~r on the basis composed of the eigenvectors of  
Pl --  AP0 �9 Such a basis exists since p~ - -  Ap0, being a trace-class operator, is afortiori 
compact, and a compact self-adjoint operator has a complete orthonormal set of  
eigenvectors (Akhiezer and Glazman, p. 131). (11) 

Accordingly, we let Pl --  APo satisfy the eigenvalue equation 

(Pl - -  ;bo) I ~ >  = W~ IW> (4) 

where ~Tk is the kth eigenvalue and ] %> is the corresponding eigenvector. Then, 

Tr(pz - -  )Po) 7r = ~ ( %  ] (Pi  - -  '~Po) 7r ] "r]/~) = Z ~)k(~] k [ 7r I "q/c) (5)  
k k 
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The detection p rob lem is to find a self-adjoint opera tor  ~r that  maximizes (5) subject 
to the constraint  (3). 

We claim % given by 

% = ~ l~ /k ) (%t  (6) 
k:nk>~O 

is one such operator .  After  Hels t rom,  we call % the detection operator .  Tha t  rr 0 
satisfies (3) is immediate.  To  show tha t  ~r o maximizes (5), we consider any other 
opera tor  ~r and show tha t  Tr(pz - -  Zpo)0ro - -  7r) is nonnegative.  Since eigenvectors 
I ~77~> are complete,  the mos t  general fo rm of  a bounded  opera tor  7r is 

where 7r~, -~ (~/~l 7r[ *h)" Then,  

Tr(pz - -  Zpo)(% --  ~) = 
/c:nk>~O 

= E 
k:nk~O 

= E 
k:nk~O 

( ~ I  (Pl - ZOo)] V~) - -  ~2 7rk~ I ppz - Zp01 ~Te) 
k,t 

k,~ 

(1- -Trkk)  7/k--  Y', ~Tr~k>~0  
k:V/k<O 

where the last inequality results because 

I f  an opera tor  7r~ is found such that  

Tr(pl  - -  Zpo)(% - -  ~ra) = 0 (7) 

we cannot  conclude that  % = 7ra, because Pl - -  ZPo is not  positive. Thus,  the detec- 
t ion opera tor  % given by (6) is not  unique in maximizing Tr(p 1 - -  2tp0 ) 7r. However ,  
all operators  ~ra satisfying (7) are equivalent to % in the sense of  achieving the same 
per formance  as % .  

F r o m  its definition of  (6), the detection opera tor  ~r 0 is seen to be a projection 
opera tor  onto a subspace spanned by the eigenvectors corresponding to the positive 
eigenvalues of  P l -  ZPo. Being a projection operator ,  7r 0 has only two distinct 
eigenvalues: either 0 or  1. This means  a measurement  of  the observable represented 
by % gives either 0 or  1. I f  the measured values is 1, we decide Hz is true with proba-  
bility 1; otherwise, we decide H0 is true. Thus,  % is analogous to the nonrandomized  
decision rule of  classical hypothesis  testing. 

There remains the p rob lem of  finding the detection opera tor  % for a given pair  
o f  density operators  pl and P0, To  obtain  ~r0, we must  solve the eigenvalue equat ion (4) 
and construct  % as in (6). I f  it happens  that  pz and p0 commute ,  then there exists a 
basis composed  of  s imultaneous eigenvectors of  p~ and  po �9 I f  the eigenvalue solution 
is known for  either Pl or  P0, the construct ion of  % is trivial. But if  Pl or  P0 does not  
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commute, and the eigenvalue equation (4) cannot be solved easily, then the problem 
is very difficult. 

One possible approach is the simultaneous diagonalization of pl and P0 �9 Being 
linear, nonnegative, and trace-class, density operators are also covariance operators. 
Although some necessary and sufficient conditions for simultaneous diagonalization 
of two such operators in Hilbert space are known, (~4~ for the present problem the 
usefulness of the method appears limited. 

An interesting special case of the above problem occurs in the detection of a 
coherent, completely known signal in thermal radiation. For this problem, Pl and P0 
do not commute and the detection operator ~0 has not been found. In the next section, 
we discuss the background of the particular problem and introduce a representation 
of Pz and Po convenient for later development. 

3. DENSITY OPERATORS IN  C O H E R E N T  REPRESENTATION 

Our aim is to find the detectability limit of coherent optical signal in thermal 
radiation. Accordingly, we consider an idealized communication system where all 
system imperfections are removed. (2~ In such a system, the source emits a perfectly 
coherent signal toward the receiver. The transmitting medium is vacuum and the 
receiver is a cavity with an aperture through which the signal together with background 
thermal radiation is introduced. The cavity is initially empty and it is exposed to the 
incoming radiation for a time that is much longer than the period of any signal 
oscillations. After the aperture is closed, we measure the field inside the cavity, as 
precisely as allowed by the uncertainty principle, to determine whether the field 
contained any signal component. 

The electromagnetic field of signal and noise, within and exterior to the cavity, 
can be quantized in the usual way cza,16) and expressed in terms of the conjugate pair 
amplitudes a~ and ae + for the kth mode, 1 ~< k < oe. In the detection problem, 
however, we need to consider only a finite number of modes since a coherent source 
can put energy in at most a finite number of modes. The modes not containing any 
signal component are irrelevant to the problem and can be ignored. Moreover, 
by introducing a suitable unitary transformation, we can further reduce the problem 
to considering just one mode (Helstrom, (a~ p. 48). 

Thus, the field of the appropriate mode may be given in terms of a pair of 
amplitude operators a, called the annihilation operator, and a +, called the creation 
operator. The operators satisfy the commutation relations 

[a, a +] = a a  + - a + a  = l 

[a, a] = [a+, a+] =_ 0 
(8) 

The self-adjoint operator ~ defined by the product a + a  satisfies the eigenvalue 
equation(15,z6~ 

~V[n> = n l n >  (9) 

J/" is called the number operator because its eigenvalues are nonnegative integers, 



354 Reo Yoshitani 

and I n) is the eigenvector corresponding to eigenvalue n. The number states I n) are 
orthonormal and complete in H. 

As a consequence of the commutation relation (8), the annihilation operator a 
satisfies the eigenvalue equation (ls,19) 

a l c,) = ~ I ~) (10) 

The eigenstate ] a) is called a coherent state and it corresponds to the state of a driven 
or displaced harmonic oscillator (Klauder and Sudarshan, agl p. 106). The spectrum 
of a is all of the complex plane with multiplicity of one. 

The coherent state I ~) can be expressed in terms of the number states In) 
by(~7,19,3o) 

[ ~) = [exp(-- ] a 12/2)] ~ [~"/(n!)I/3lln > (11) 
f~=0 

Coherent states ] o~) are not orthogonal since 

<~ ] fl) = [exp(--�89 I ~ 12 - -  �89 ~ [a*"fim/(n!m!)Z/2]@ I rn) 
n , m  

= exp(~*fi -- �89 c~ 13 -- �89 13 ) (12) 

but they are complete in the sense 

I = f ]  @ @  I (d3~/~) (13) 

where d3c~ = d(Re a)d(Im ~) and the integration is over the entire complex plane. 
Equation (13) is formally established from (11), the completeness of I n), and the 
identity 

A rigorous proof of (13), justifying the interchange of summation and integration, 
is given by Bargmann. (2~ Using (13), any I f )  in H can be given the coherent 
representation 

f <@(~ If)(d3~/7r) = f 1 @f(a*)[exp(--  [ e~ 13/2)](d2a/~r) (14) l f>  

where <c~ If> = f ( ~ * )  exp(-I a 13/2). Also, by the completeness of l n), If> = Z~fn [ n), 
wheref~, = <n F f ) .  Then, using (11), 

<~ If> = [exp(-- I~ J3/2)] ~ [f,~*"/(n!)l/3l 
•=0 

Equating the two expressions of <~ ] f ) ,  we conclude 

f(o~*) = ~ [f,o,*"l(n!)l/3] (15) 
n ~ 0  
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In view of the condition ~ Xf~ 12 = 1, the series (15) is absolutely convergent for 
finite, thus defining an entire function. 

The class ~ of entire functionsf(~*) has some remarkable properties. Foremost 
is its reproducing property. If  we multiply (14) by (fi r, 

(fi r f )  = f(fl*) exp(-- 1/3 12/2) = f (/31 @f(a*)[exp(--  [ I2/2)](d2o~/~v) (X, 

and use (/3 l cr given in (12), we have the reproducing formula 

f(/3*) = f [exp(/3*~ -- [~ l~) ] f (o~*)(d%~/ ~) (16) 

I f f (~*)  - 0  for all a*, then I f )  = 0, and conversely. Therefore, any ] f )  in H 
can be put into a one-to-one correspondence with f(cr in ~ .  Moreover, by (16), 
we have 

g) ----- f [f(c~*)]* g(~*)(exp -- [ a ]~)(d2~/Tr) ( f l  

The integral on the right has the correct properties of an inner product and Y can 
be made into a Hilbert space. We shall denote the inner product in J"  by ( , )  and 
make use of o~ in Section 4. 

We now review the derivation of density operators Pz and Po, corresponding 
to hypothesis H0 and HI .(167 To obtain P0, we assume the electromagnetic field of 
thermal radiation has been coupled to the appropriate cavity mode and that the 
cavity is at a thermodynamic equilibrium at temperature T. Under these conditions, 
the density operator is one that maximizes the entropy 

S = --kp In p (17) 

under the constraint 

and 

Tr p = 1 (18a) 

Tr #H = (E)  08b) 

where H is the Hamiltonian given by 

H = hf(a+a + �89 

and E is the known average energy of the mode. The result of maximization is 
(Louisell, 116~ p. 232) 

Po : e--H/kT/Tr e--H/kr 

Substituting for H, we obtain 

Po ---- (1 -- e -w) e -w~+a = (1 -- e -w) i e - ~  ] n)(n (19) 
n = O  

where w = hf/kTand the second equality follows because exp (--wa+a) ---- exp (-- wA/') 
is diagonal in the number representation. 
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To derive the density opera tor  under  hypothesis H z ,  we assume a coherent,  
completely known signal to be superposed on the thermal  radiation. We still 
maximize (17) subject to (18a) and (18b), but  we have two additional constraints:  

( p )  = Tr  pp 

( q )  = Tr  pq 

These two conditions reflect our  knowledge about  the known signal. The  density 
opera tor  u n d e r / / 1  is (Louisell, (161 p. 245) 

Pz = [(1 - -  exp (--w)]  exp[ - -w(a  + - -  /z*)(a - -  /z)] (20) 

where ] /z [2 = N~,  the average number  of  signal photons.  
We now give the density opera tors  P0 and Pl in the coherent  state representation.  

By the completeness relation (13), density opera tor  Oi has the representat ion 

T o  compute  the quanti ty ( a  I p( ]/3), we make  use of  the following opera tor  identity. 
I f  an opera tor  b and its adjoint b + satisfy the commuta t ion  relations 

[b,b]= [b + ,b  + ] = 0 ,  [b ,b  +] = I  

then for  a real pa ramete r  X (Dirac, aSI P. 116), 

exp (xb+b) = i [( ex - -  1)~/m!] b+~b~ 
~ = 0  

We apply this fo rmula  to evaluate (o~lpllfl) , by letting b = a -  /~. Then,  
[b, b +] = [a, a +] = 1, so that  

(c~ i P1113) = (1 - -  e -w) i [( e-~ - -  1)/m!](~ I ( a+ - -  /z*)~( a - -  /z)~l/~) 

(1 - -  e -w) exp[(e ~ - -  1)(~* - -  /z*)(/3 - -  /z)](c~ I ]3) 

= (i -- Vo) exp[voa* fl q- (I -- Vo)(~*/~ q-/3/, -- i/z [2)I 

• exp(- - �89  a [2 _ �89 ) (22) 

where Vo = e -~. Sett ing/~ = 0 in (22), we obtain 

(~  ]P0 it 3) = (1 -- Vo) exp(v0e~*/3 -- �89 ] c~ 12 -- �89 I/3 12 ) (23) 

There also exists a coherent  "d iagona l"  representat ion of  p~ and p0, which may  
be useful in some applications/18,~9~ In  this representation, 

Pl = f [exp(--  I ~ - ~ [2/N)] I ~ ) @  [(d2c~/TrN) 

P0 is obtained again by set t ing/z = 0 in pz above. 
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If  we expand the detection operator in terms of number states [ n>, we have 

rr = ~ n><n { rr I m><m I = ~,, rr,,,~ l n><rn I 
n , m  n,~rt 

Then the matrix element <fi I ~" I a> is given by using (11), 

Since I 7rn,~ I ~ 1, the sum 
and a and thus defines an 
detection operator, we must 
the integral 

Tr(pl -- ~Po) ~r = 

[rrnm/(n!m!) 1/21/3*"am i exp(--�89 ] a 12 - �89 

in the braces is absolutely convergent for all finite fl* 
entire function o f  two variables, ~r(/3*, ~). To find the 
therefore search for the function 7r(/3", a) that maximizes 

f f <cx ] Pz --  ~Po [ fl>(~ l rr I a>(d2a/rr)(d2~/rr) 

f f  - 
• [exp(-- ] a 12 --  I/3 I')](decdrO(d~fl/rr) (24) 

Rz(a*,  fi) and Ro(a*, fl) are known entire functions of two variables a* and/3, where 

Rz(c~*,/3) = (1 -- v0) exp[v0cr + (1 -- v0)(c~*/x + fl/~* -- I/x ]2)] (25) 

and 

R0(c~*,/3) = (1 -- Vo) exp[v0~*/3] (26) 

The constraint condition 0 ~< ( f l  r If> ~< 1 for all t f >  of norm 1 becomes 

0 <~ f f  [f(/3*)]* ~r(/3*, a)f(c~*)[exp(-- [ a ]2 _ I/3 12)](d2/3/rr)(d2c~/rr) <- 1 

for all entire functionsf(~*) such that 

f I f(a*)l~(exp -- t e~ t2)(d2cx/Tr) = 1 

The arbitrariness off(c~*) in the constraint condition prevents us from applying the 
usual techniques of optimizing the functionals, and the problem of finding ~r(/3*, a) 
appears very difficult. 

We note in passing that the problem is easier if the phase of the coherent signal 
is a random variable. We may assume the uniform distribution in [0, 27r] for the phase, 
and the density operator for the case is Pl of (20) averaged over [0, 2~r]. Then, the new 
density operators Pl and P0 commute and since the number operator N commutes 
with both, it suffices to measure N. Helstrom (2) solved this problem and published 
curves of the result. (22) Liu (21) extended his results and derived the bounds on the 
error probability. 

To solve the problem when the phase is known, it appears we must resort to some 
approximation. The next section discusses one approximation particularly applicable 
to optical signals. 
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4. S O L U T I O N  FOR O P T I C A L  F R E Q U E N C I E S  

We recall from Section 2 that our detection problem is solved completely if 
we can solve the eigenvalue equation 

(pz -- '~Po) [n> = ~ t7> 

where Pi and P0 are given positive trace-class operators and 2t is any positive number. 
Since both pl and P0 are infinite-dimensional, we may try to approximate them by 
their finite-dimensional counterparts plm and POM. A convenient coordinate for 
computing the matrix eIements of pl and Po is the set of number states I n>. The 
operator P0 is diagonal in the number states: 

(n l#o ira> = (1 -- Vo) Vo ~ 8~,,~ (27) 

To compute the matrix element (nl  Pll m), we use the expansion of l n> in terms of 
coherent states: 

in> = f I I n>(d2c@ r) 

= f loO ~ [a*"/(n!)l/2l(exp --�89 12)(d,/~) 
n = 0  

Then, 

<, I P1 I ' , >  = ff I 

• ~ [~a*'~/(n!m!)ll2l[exp(--�89 ~ 12 - �89 12)](d%~/Tr)(d2fi/7r) 
"l?,,,m, 

Substituting for (a lP1  ] fi> from (22), expanding exp(v0c~*/9 ) in series, and using the 
reproducing formula (16), we obtain 

<nlp~ l m> = (1 -- v0)(exp --i /x ]2)(n!/m!)l/2 [Vo~/(n -- m)!](ix/N) ~-~ 

• M ( n +  1, n - - m +  1;v0[/xl2/N 2) 

where M(a, b; z) is the confluent hypergeometric function. Using the Kummer 
transformation M(a, b; z) = e'M(b - a, b; --z), we can also write the above as 2 

@ I Pi ira> =- (1 -- v0) v0~{exp[ - ] /x I~I(N + 1)]}(m!ln!)l/~ 
(28) 

N ~-m ,n-~,~)( I2IN(N + 1)) x(_l  ) L . - I ~  

where Vo = N/(N + 1), and L~)(x) is the generalized Laguerre polynominal. 
Equations (27) and (28) give the matrix representation of P0 and p~ on the number 

states. By truncating the matrices after M dimensions, we obtain PzM and Poi.  
The problem is ready for machine calculation of eigenvalues and eigenvectors of 

C. W. Helstrom, private communication. 
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PlM -- AP0M- There are, however, some difficulties with this approach. The first is 
that we cannot readily find a bound on the error we make by truncating the matrices. 
It is clear that by increasing M we obtain more accuracy, but it is not apparent what M 
is sufficiently large. Second, for conditions of communication at optical frequencies, 
vo, hence N, is very small. Looking at (27) and (28), we foresee some difficulty in 
computing the matrix element accurately for small N. Furthermore, there are always 
inaccuracies in machine computation of eigenvalues and eigenvectors, especially for 
large matrices, and this is in conflict with the requirement for large matrices. 

For these reasons, we abandoned the direct finite-dimensional approach and 
decided to look for a faster and more accurate algorithm especially suited for optical 
frequencies, where v0 is small. An algorithm with such characteristics is derived next. 

The eigenvalue equation ( P l -  ,~Po)I ~ / ) =  ~7 1~7) can be converted into an 
integral equation by premultiplying by (c~[ and expanding It/) in terms of I/3). 
That is, if we put 

= j" /3)(/3 [ ~)(d~/3/~) 

f /3) f(/3*)[exp(--�89 I/3 Jz)](d2/3/~r) 

where F(/3*) = (/3 l ~/) exp(�89 I/312), then we have 

f [{o~ i,ol I/3) - ,~(o~ I Po l /3) ] { /3 j r l } (d2/3/~) = zl(,o~ I rl) 

This is an integral equation of the form 

K(o~*,/3) g(/3*)(exp -- I/3 J2)(d2/3/w) = ~TF(c~*) (29) 

where K(~*,/3) = R l ( a* , / 3 ) -  1Ro(~*,/3) and where Rl(c~*,/3) and R0(a*,/3) are 
given by (25) and (26), respectively. 

We now wish to solve (29) for eigenvalue and eigenfunction F(o~*), which must 
belong to the Hilbert space of analytic functions Y.  The key to the derivation is note 
that both RI(~*,/3) and Ro(c~*,/3) contain reproducing kernels of the form exp se*/3. 
Thus, we can immediately integrate (29) by the reproducing formula (16). The result 
is a functional equation for F(~*): 

{exp[(1 -- Vo)(~* -- /z*)/x]} F(voo~* + (1 -- Vo) /~*) -- AF(vo~*) = ~F(~*) (30) 

where E = 7/(I -- v0). 
We still cannot solve this equation in general but, because F is analytic, we can 

make progress. Our interest in the solution is primarily for the optical frequencies, 
where v0 is small. Therefore, we shall expand (30) in powers of v0 and attempt to solve 
simpler functional equations of low order in vo �9 The expansion gives 

[exp(~*/x -- j/~ 1~)] ~ (Vo"/n!) Gl'~)(/x*)(c~ * --/~*)n 

--  A ~, (Vo~/nt)F(~)(O) ~*" = EF(~*) / (31) 
n=O 
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where G(~(/~ *) is a constant  given by 

k = 0  

Finding the constants GI'~/(/z *) and F(n~(0) is equivalent to solving the functional  
equat ion (30). Al though we are unable to solve for  all constants,  we can t runcate  
the series after no terms and solve for the constants  in the t runcated series. Since 
the series converges, the error  is of  the order v(0 %+~ and since v0 ~ 1 for  optical 
frequencies, the solution for  the t runcated series can be an excellent approximat ion.  
The clue to finding the constants GI")(/~ *) and FI")(0) comes f rom the zeroth-order  
(n =- 0) solution. Note  that  the zeroth-order  solution is equivalent to setting v0 = 0, 
or since Vo = exp( - -h f / kT) ,  it is the limiting solution for  very high frequency or very 
low temperature.  Setting Vo = 0, we obtain 

[exp(c~*/x - -  [ /z 12)] F(/z*) - -  AF(O) - -  ,F(o~*) (33) 

By alternately setting ~* = /z* and a* = 0, we arrive at  a two-by- two matr ix  
eigenvalue equat ion 

[exp(1 -alrF( *)l { u l  2) - - ) d t F ( 0 ) J  = e L F ( 0 ) ]  (34) 

The equat ion for  eigenvalue ~ is 

e z-{- (A- -  1 ) , - - A q = 0  (35) 

where q = 1 - -  exp - - [ / z  12. I t  is clear that  for  the case v0 = 0 there are only two 
eigenvalues, one positive and the other negative: 

where 

E• = [(1 --  A)/2] ~ R (36) 

R = {[(1 - -  A)I2] ~ -F Aq} 1/2 (37) 

Substituting the result f rom (34) into (33), we see that  the eigenfunction for  Vo = 0 is 

Fl~ *) = (C~/E•177 + A)(exp ~*/~) - -  )q 

where C• is the constant  determined f rom the normal izat ion condit ion 1 = (F C~ F ~~ 
and is given by C~: = [(E• - -  q)/~2R]l/~.  

We digress a little to obtain an expression for  pl and Po when Vo = 0. Recall 
v o = e  -w and P l = ( 1 - - e  -w) exp(--wb+b), where b = a - - / ~ .  Then, as v o - -+0  
(Louisell, (1GI p. 248), 

Pz [vo=0 ---- lira (1 - -  e -w) exp(--wb+b) = I O>b b(O I 

where ]0)~ is the eigenstate of  the number  opera tor  Nb = b+b corresponding to 
number  zero. But since b ] O)b ---- O, a { O)b = / z  I O)b, and f rom (10) and the unique- 
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ness of coherent states, we obtain ] 0)b --~ I/z). Therefore, pz(Vo = 0) = I /z)(/z I 
and po(Vo = 0) ---- I 0)(0 ]. 

The probability of detection Qa is given by Qa = (~§ I pz I c§ where I e+) is 
the eigenvector corresponding to the positive eigenvalue % .  After some algebra, 
we obtain 

Qa = I(e+ I tz)] ~ = (e+ -F Aq)/2R (38) 

Similarly, the probability of false alarm is given by 

Q0 = l(e+ [0)l 2 = (e+ - q)/2R (39) 

Expressions (38) and (39) are identical to those due to Helstrom, c~) who obtained them 
by solving the eigenvalue equation 

H01 ~7) = ([/z)(tz I -- A [0)(0 J) I~7) = ~71~7) 

We have thus far enumerated only two solutions of the above equation. They 
are given by 

[~• = (C•177 -1- A)[exp([/z IZ/2)] I t~> - A I0>} 

Any other eigenvector ]r/~> must be orthogonal to both [~7+> and [ ~7->. A simple 
calculation shows that [~7~> must be orthogonal to both [/x> and 10>. Therefore, 
the contribution from 1~7~> to the probability of detection and to the probability 
of false alarm is zero. Moreover, since the range space of H 0 is spanned by I/x> 
and [ 0>, [ %> must belong to the null space of H0, i.e., its eigenvalues must be zero. 
This completes the solution for the case of Vo = 0. 

Having solved the problem exactly for v 0 = 0, we may try to apply the known 
techniques of perturbation theory to obtain solutions for small Vo. For example, 
the first-order expansion of pz -- ~Po is 

H I =  Ho + voV 

= I t~>(t~ [ - ~ I 0>(01 + v0{(a + -- /z*) ] /z></z [ (a -- /x) -- ha + [ 0><0t a) 

where V is the expression in the braces. The first-order correction to eigenvalues e• 
is given by (~7• ] V[ ~7• But, in addition to e• there are infinitely many eigenvalues 
at zero that must be perturbed. The eigenvectors corresponding to zero eigenvectors 
must be chosen out of the subspace orthogonal to [ ~7• But there are infinitely many 
such vectors and each choice results in a different correction and this is clearly 
untenable. In short, the usual techniques of perturbation theory are not useful, 
because of the infinite-fold degeneracy at zero eigenvalue. Removing the degeneracy 
by diagonalizing is as difficult as solving the original problem. Fortunately, an 
approach through functional equation (31) is available and the zeroth-order solution 
gives us a hint as to how we might proceed. 

We recall that we solved the zeroth-order functional equation (33) by alternately 
setting a* = /z* and then a* = 0. To solve the first-order equation, we must 
determine four constants: G r176 G m, F(0) and Fro(0). The first-order equation is 

[exp(~*/z -- [/z 12)][GC0'(t~ *) + v0Ga~(~*)(~* --  t~*)l 

--/~{F(0) -t- voFm(O) ~x*] = ,F(c~*) (40) 
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By substituting ~* = /x* and a* = 0, we see that two equations relating the four 
constants are obtained. Two other equations are readily derived by first differen- 
tiating (40) with respect to c~* and then setting c~* = /x* and c~* = 0 alternately. 

It is clear how we may generalize this procedure to obtain the noth-order solution. 
We differentiate (31) k times, 0 ~ k <~ no. The result is 

M ~ - l ( ~ *  __ tL*)~-~ 

~'g=0 

~--k v~ F ~ ) ( 0 ) =  ~ ~ (41) 

where M = min(m, k). We now set ~* = bt* and a* = 0 alternately to obtain two 
sets of equations; when ~* = ~, 

~=0 ~=k (n -- k)! 
(42) 

and when ~* = 0, 

(exp -- ] h t l S) ~ vo~G(~)(t x*) - ~ / ~ .  1 -- Zv~ = EF(k)(0) (43) 
n ~ 0  

We see by writing out (42) and (43), with help from (32), that the unknowns FOx*), 
F(0), Fm(/x*), Fro(0),..., F(")(I~*), F(")(0),... are the components of an eigenvector 
corresponding to eigenvalue e. 

Thus, the problem again reduces to solving an infinite-dimensional matrix 
eigenvalue equation, not unlike the earlier matrix equation on the number states. 
We have gained something through our work, however, when we truncate the matrix 
given by (42) and (43) after no dimensions, all terms neglected are of order v~o %+1) 
and higher. We cannot claim the same for the number representation. Moreover, 
since Vo is small for most cases of our interest, this algorithm gives us a good bound 
on the error. Another advantage of the present algorithm over the number representa- 
tion is that for small Vo the matrix can be kept small. It is clear that in order to keep 
the error below V~o %+1) the matrix must be 2(no § 1) by 2(n o + 1), 0 ~< no < oo. 
For  optical frequency applications, no of two or three should be adequate, and for 
these small matrices the eigenvalues can generally be calculated quite accurately. 

The components of the eigenvector must be normalized according to (F, F) = 1. 
Using (31), we have 

e = ~ (Vo~/n!)[G(~)(l~*)]* f (a-/z)~[exp/~*(~-/~)1 F ( ~ * ) ( e x p -  ]~  ]2)(d2~/'rr) 
e = 0  

--2~ ~ (vo"!n !)[F(~)(0)] * f ~"F(~*)(exp -- I = I~)(d~/~r) (44) 
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The first integral, on expanding F(~*) as in (2.8), becomes 

I~ = f (~ - -  /z)n[exp/z*(o~ - -  p)]  ~ [fd(k!)l/2] c~*~(exp - -  ~ [2)(d2a/rc) 
k=0 

= ~ [fd(k!)Z/2](a'~/at z*") f [exp ~*(~ - -  /~)1 a*~(exp - -  a 12)(d2o(rr) 
k=0 

The last integral can be evaluated by the reproducing formula (16). The result is 

In [A/(k!)~/2](a'/al ~*") e "*"l x~'~ 
k=0 

= ~ [fd(k!)l/q(a"/a~ *") e~*"~ *~ I~,=., 
lc=O 

= (O~/a~*")e-~*. ~ [f./(k!) ~/21 ~*~ 1~,~., 
Ic~0 

= (a~/ac~*") e~*.F(a*)] . . . . .  

It is easy to show by induction that I .  = (exp -- I/~ I ~') G("~)(t~*), where GI~)(> *) is 
as given by (32). The second integral of (44) may be similarly computed. The result is 

d~. = f a~F(~*)(exp -- ] ~ 12)(d~a/rr) = F(")(0) 

Therefore, the normalization condition (44) becomes, for the kth eigenvalue, 

% = ~ (Vo"/n!){] G(m(/x*)]2(exp - -  I/~ 12) - A l Fr z} (45) 

For illustrative purposes, we write out (42), (43), and (45) in matrix form for no = 1~ 
For  this first-order calculation, we have from (32) 

= 

-G(O)(/~,)- 
F(O)(0) 

G(1)(/, *) 
Fro(0) 

1 0 0 
0 1 0 

- / ,  0 1 
0 0 0 

i ]  -F(~ 
FI~ 

F(~)(I~ *) 
F(1)(0) 

The eigenvalue equation is 

1 
exp(--/z 2 ) 

/~ exp(--/~2) 

-;~ 0 -~o~ 1 
--A --vo/, exp(--/* 2) 

0 Vo --ZVo [ 
0 v o exp( - - /~  2) --hVo [ 

X(1 --/ ,2) l 

X ~ = ~  [ F,O,(~) -] 
F(o)(o) | 
Fa'(/z) ] 
Fro(0) l 

(46) 
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where we have set the phase of F at zero without loss in generality. The normalization 
cond i t i on  (46) be comes  

l! ~176 
- a  0 X G = ~  
0 v o 
0 0 --VoA 

Incidentally, we note that eigenvalue e must be real, despite the fact that the matrix 
in (45) is not Hermitean, since the kernel in the integral equation (29) is symmetric 
after any truncation. For the first-order calculation, we can show more. The eigenvalue 
equation is a fourth-order polynomial 

~4 -t- (A - -  1)(1 + v0) E a + {(A - -  Vo)(Vo A - -  1) - -  2Vo;tq + ~(1 - -  q)[1 - -  v0 + v0Ns]} e 2 

-}- voA(A - -  1)[N~(1 - -  q)(1 - -  vo  + v o N ~ )  - -  q(1 + Vo)] 

+ Vo~A~{q 2 - -  (1 - -  q ) N ~  ~} = 0 (47) 

where  N ,  = /z =. The  roots  o f  (47) are g iven in Fig. 1 as func t ion  o f  the perturbing 
parameter  v 0 . W e  note  that  w h e n  v0 is very smal l  the  two  e igenvalues  near zero  
van i sh  whi le  the outer e igenvalues  approach  those  specified by  (36). W e  can s h o w  this  
m o r e  clearly by  lett ing v 0 = 0 in (47). There results 

c2[E 2 + ( h -  1) E - - A q ] = 0  

The four roots are 0, 0, and E< as given by (36). 
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It  may be of interest to compute the eigenvector 1 ~7) of operator Pl -- )tPo. 
From (14) and (31), we have 

n=0 

• f [  ~)(~* --/~*)~{exp[~(~* - - /z*)  -- ([ ~ ]2/2)]}(d%~/rr) 

--  LF<"'(0) f ]  @ ~*"[exp(-- i c~ ?/2)](d~/~)) 
Let us consider the second integral first. We note that  

(c~ I a+" l 0) ---- ~*"(c~ 10) ~-- c~*" exp(--[ ~ 13/2) 

so that  the integral is, by an elementary property of  the creation operator, 

f ]  o~)(d2o~/~)(c~ l a +'~ 10) = a += 10) = (n!)Z/~ln) 

The first integral can be rewritten as 

[exp(-- I/x 13/2)] f ] @(c~* --  /z*)"@ I tz)(d%~/rO 

using the relation (~ [ /~) = exp[c~*/~ -- (1 ~ 1~/2) -- ([/z ]z/2)]. But (c~ [ (a + -- /~*)~ = 
(~* -- /z*)" (c~ [, so that  the integral becomes [exp(--I tz [~/2)l(a + --/~*)~ [ n). The 
k th  eigenvector of  pz --  ;~Po is therefore 

t~k) = (1/ek) ~ (Vo"/n!)[G~')(l~*)[exp( - [ /z 13/2)](a + -- /~*)"  I /x) 
n=0 

- -  AF~'~)(O)(n !)a/3 I n)] (48) 

The opt imum detection operator % can be constructed f rom (48) but  it is not  obvious 
how the expression for % can be simplified. A procedure equivalent to measuring ~r o 
is to measure the operator pz -- hpo and decide that  a signal is present if a positive 
eigenvalue is obtained. 

It remains to calculate the probability of detection Qa and the probability of 
false alarm Qo- We recall that  

T r  p i t t  - -  A Tr port = Qa - hQo = }-', ~k 

Therefore, 
Q a =  ( 1 - v o )  ~ "kq-aQo  (49) 

k:%~0 

Since we have now computed eigenvalues e~, it suffices to calculate Qo. We recall 

Q o = T r p 0 ~ r =  ~ ( ek [po [ek )  
k:%~0 

8221214-5 
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Making use of (23), (48), and the reproducing formula, we obtain 

= (1 - -  Vo) ~ (Vo~/n!)lF~)(O)l ~ (50) 

Q0 = (1 - -  v0) 
k:%>~0 

Some numerical results are given in Fig. 2-6. Values of Qa and Qo for these 
figures were computed by a third-order perturbation, retaining terms of order up 
to v0 z. Here, no = 3; therefore, the size of the corresponding matrix eigenvalue 
equation is eight by eight. 

In Fig. 2, the probability of error P, is given by 

P ,  = �89 - -  Oa) 4- �89 
1 

10 -1 

10 ̀2 

10 ,3 

10 "4 

\ 

X= 1 %=~• ) 

~O = 0 ~  

4 

N S 

Fig. 2. Probability of error vs mean number of signal photons Ns. 
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We note that, for v0 < 10 -2, P,  is very close to the corresponding values of  P~ for 
vo = 0. We also observe in Figs. 3-5 that, if v o is smaller than 10 -2, its Qa is only 
slightly less than that for v0 = 0. It appears that, for vo less than 10 -~', Qd and Qo 
for Vo = 0, as given by (38) and (39), are good approximations to the true values. 

Figure 6 gives an interesting performance curve. The most  promising application 
of  the laser in communication systems appears to be in the space environment. 
Accordingly, we consider a binary laser communication system between a satellite 
station around the earth and a station on the moon.  The messages are coded into 
0's and l's, where a 1 is transmitted by sending a laser pulse and a 0 by sending nothing. 
We suppose 0's and l's to be equally probable and an ideal receiver to measure the 
signal from a carbon dioxide laser. We further assume that the earth satellite station 
sees lunar day as background and the m o o n  station sees the sunlit earth as background. 
Under these conditions, the signal wavelength is 10.6/zm and background temper- 
atures are 373~ for the m o o n  and 300~ for the earth. (2m Figure 6 gives the lower 
bound on the error probability in this communication environment. It is a bound 
in the sense that to achieve a lower probability than indicated is tantamount to 
violating the laws of  physics. 
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For comparison, we included the error probability curve of a classical "on -o f f "  
binary channel. Its error probability is given by (Helstrom, m~ p. 190) 

P~ = erfc(D/2) 

where erfc(.) is the complementary error function. In the classical limit of  h f ~  kT, 
N given by the Planck formula N = [exp(hf/kT) -- 1] -a becomes kT/nf and the 
signal-to-noise ratio D 2 becomes D ~ = 2E/kT, where E = N~hf is the energy of the 
signal. 

5. DETECTOR T H A T  M A X I M I Z E S  S I G N A L - T O - N O I S E  RAT IO  

In classical detection theory, when the detector specified by the Neyman-  
Pearson criterion is too complicated to implement, we sometimes seek a detector 
that maximizes an appropriately defined signal-to-noise ratio. For  example, if U is a 
sufficient statistic of  the data, we may define a signal-to-noise ratio by 

D 2 = ( E o U -  EoU)2/VaroU (51) 
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Fig. 5. Probability of detection vs mean number of signal photons; Q0 =~ 10-3- 

where EoU is the condit ional expectat ion of  U given that  the signal s trength is 0; 
EoU is the same with 0 = 0; and Var0U is the variance of  the statistic in the absence 
of  the signal. A detector tha t  maximizes D 2 in the limit 0 --+ 0 is called a threshold 
detector and it is op t imum in the sense of  maximizing the asymptot ic  relative 
efficiency.~24) 

Hels t rom (2) defined a signal-to-noise ratio for  quan tum detection problems as 

D 2 = (Tr 9177" - -  Tr  po~r)2/[Tr poTr 2 - -  (Tr poTr) 21 (52) 

This is a quan tum mechanical  analog of  (51). The  opera to r  =s that  maximizes (52) 
is given by the solution of  the equat ion 

2(~ - -  Po) = poets "-[- 7rspo (53) 

For  proof ,  we follow Hels t rom.  (6~ Fist, we note tha t  we m a y  put  

Tr  pozr~ = 0 (54) 
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since a constant  operator  may  be subtracted f rom ~r, without  changing D 2. The 
definition o f  7r, in (53) shows that  p0,r~ must  be trace-class. 7r~ satisfies (54) because 

2(Tr pl - -  Tr  po) = 0 = Tr po~r, + Tr ~r,p o = 2 Tr  po~r, 

Let  ~r be any other operator  such that  po= 2 is trace-class. We consider [Tr(p~ -- Po) 7r] ~- 
F r o m  (53), we find 

Tr(p~ - -  Po) ~r2 = [�89 po=,Cr + Tr =~po=)] 2 

= [Re Tr  po~r,rr] ~ < [ Tr  porrW [2 

__ Tr(,ll2rr 2,~1/2"~ Tr(~rpo~. ) 

=Tr po=s2Trpo= 2 
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by the Schwarz inequality for traces. Hence, D 2 ~  Tr port ~, with equality when 
~r s = 7r. An alternate expression for the maximum signal-to-noise ratio is obtained 
by using (53) and (54): D 2 = Tr p0~rfl = �89 Tr 2 ( p  I - -  P0) frs = T r  pl'n's. 

If  0 is the signal strength parameter, the threshold operator ~r, is the solution 
of the equation (Helstrom, (2) p. 275) 

[~pz(O)taOlr0=0 = ~(po~'~ + ~P0) (55) 

Helstrom solved (55) for various cases, among them the coherent known signal case. 
The zr~ thus found maximizes D 2 in the limit of low signal strength. 

A more general solution, one that maximizes D 2 for all signal levels, is given by 

t ~  09 

7r o = 2 [ e-~ 1 -- Po) e-~176 dy (56) 
~ J  

0 

Integrating ~r0 by parts, we see that it satisfies (53). We consider several examples 
below. First, we note that 

f e-~ e-~176 dy = I 
0 

Therefore, it remains to compute 

= 2 f e-~'~176 dy "77"sl 
. 1  0 

5.1. A C o h e r e n t  Signal of U n k n o w n  Phase 

When the phase of the complex parameter /z in (20) is completely unknown, 
we assume it has the least favorable distribution, which is uniform over the interval 
(0, 2zr). We recall that in coherent "diagonal" representation, the density operator 
under hypothesis/-/1 is 

p l =  f [ e x p ( - - I ~ - - t  z I~/N)] 1 (57) 
d 

The density operator for the unknown phase is obtained by averaging (57) with 
respect to the uniform distribution of arg/z = ~b (Helstrom, (2) p. 269), 

Pl----- (d 2~-) 

f = (d~/27r) {exp[- (1 ~ [2 _ 2 [ o~ [ [ ~ [ cos(~ - 0) + ]/z 12)/N]} 1 ~)(c~ ] (d%~/rrN) 
0 

f {exp[--(I c~ I + ] t x ]2)/N]} I0( 2 ] ~ [ ]/z [/N) 1 a}(c~ ] (d2c~/zrN) (58) 

where 0 = arg c~ and _to(. ) is the modified Bessel function. We can express fil in terms 
of the number states 1 n} as follows: From (22), we have that 

[ @@ ] = [exp(-- ! ~ [3 _ [fl ]~)] 2 [~ 1/2] [n} (m [ 
n . m  
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Substituting this in (58) and noting that the integral gives nonzero value only when 
n = m, we obtain 

fix = ~ plk l k><k l 
k=0 

where Px~ is the coefficient of the Laguerre distribution (25) 

Px~ = (1 -- v0)Vo~e-Nd(N+I)L~[--NJN(N + 1)] 

v o = N/(N + 1) (59) 

Thus 
0o 

= 2 f e-V~176176 dy q'C.s 1 
,1  0 

= 2~_-0Pzkf= 0 e-O~ 

= (1 - vo) -x F, v o % ~  I k > @ l  
k=0 

Therefore, the operator zr, that maximizes the signal-to-noise ratio is 

~r, = ~ {e-NJ(N+I)L~[--NJN(N + 1)] -- 1} I k>(k ] (60) 
k=0 

When signal is not present, P0~ = ( 1 -  vo)v0 k, and we see that e-N'/(N+x) 
L~[--Ns/N(N + 1)] is in fact the likelihood ratio Pz~/Pok. Thus, zr~ in (50) is analogous 
to the statistic 

f(x) = [pa(x; O)/po(x)] -- 1 

that maximizes the signal-to-noise ratio in the classical theory. (~6) 
We decide that a signal is present whenever the likelihood ratio e-N'/(u+x) 

L~[--NJN(N + 1)] exceeds a decision level ;t. But this is precisely the strategy 
obtained by Helstrom for the Neyman-Pearson criterion (Helstrom, (~~ p. 270). 
Thus, 7rs and the Neyman-Pearson detector are equivalent in performance, and 
Helstrom has given the performance curves. (z~) The maximum signal-to-noise ratio 
for such a detector is given by 

O~ 2 ----- Tr t51~rs = e -Ns/(N+I) ~ Lk[--NJN(N q- 1)](k I t51 ] k} -- 1 
k=0 

= (1 -- Vo) e -2Ns/(N+I) ~ {L~[--NJN(N + 1)] 3} -- 1 
k=0 

The sum above can be evaluated by a generating function formula of the generalized 
Laguerre polynomial (Erdelyi eta/., I27) p. 189, Eq, (20)]. The result is 

D~ ~ = Io{2N./[N(N q- 1)] 1/2} - -  1 (61) 
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For  large N, D~ z = Ns~/N 2. The ratio D~ 2 approaches  infinity as N - +  0. This is not  
surprising, for  7r~ o f  (60) becomes unbounded  as N--~  0. 

5.2. A C o h e r e n t  Signal of Known Phase - -Sma l l  Signal 

When the phase r o f  the signal is known,  the p rob lem of  finding an opera tor  
that  maximizes D 2 is more  difficult. Therefore,  we consider the case of  small signal 
first. We need an expansion of  

/01 = (1 - -  v0)exp[ - -w(a  - -  /x)+ (a - -  t0l  

for  small-signal paramete r  /~. I f  we ignore the factor  (1 - -v0)  for  the moment ,  
{exp[--w(a - - /~)+  (a -- /x)]} with w e (t3, ~ )  is a semigroup.  We pu t  

V(w) = exp[ - -w(a  - -  /~)+ (a - -  /x)] = exp[ - -w(a+a  - -  /L*a - -  /za + + I/z ?)] 

= exp[--w(~4/" § A)] 

where ~A r = a+a and A = - - ( ~ * a  + / x a  +) + I ~ [~ I is the per turbing opera tor  o f  
semigroup U(w) = e - v ~ .  The three terms of  A are of  the same order of  magnitude;  

T r  Pltz*a = T r  tzpza+ = T r  P l  [ i if- ]2 = ] ~ 12 

and none can be ignored. 
Since V(w) is a semigroup,  we have the following successive approx imat ion  

of V(w)(~8): 

V(w) = ~ U. (w)  

f 
q/) 

u.+l(w)  = - U(w - s) A U.(s)  ,is 
0 

where Uo(w) = U(w). The first-order te rm is 

f ~t) 
Uffw) = - -  e-(~-~)~"Ae - ~  ds 

0 

= - -  ] ~ 1 ~ we - ~  q- (1 - -  vo)(l~a+e - ~  q- e - ~ l ~ * a )  

where we have used the operat ional  rules (Louisell, 116) p. 111) 

e - W X a  : aeWe -w.N', e-W..e'a+ = e-Wa+e -w,,e" (62) 

Therefore,  Pl is approximate ly  

P1 ~ po - I ~ I ~ Wpo + (1 - Vo)(tza+po + tZ*poa) 
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7r~ based on the above approximation is 

c o  

= 2(1 -- vo) ~ e-~~ 4- tZ*poa) e -~176 dy - -  I I ~ [ 2 w I  7"g s 

0 

= [2/(2N + 1)](/x*a -b/xa +) -- I t z [2 w l  (63) 

where we used the following identities derivable from (62): 

[exp(--poy)] a = a exp(--e~'poy),  a + exp(--poy) = [exp(--eWpoy)] a + 

The first term in (63) is identical to the threshold detection operator ~-~ of Helstrom's 
(Helstrom, (4~ p. 166), who obtained it by solving the equation 

2(apl/~ [/z I)h,T=0 = P07r~ § 7hp0 

Since 7r~ of (63) does not satisfy (54), its signal-to-noise ratio Ds ~ must be computed 
from (52). The result is 

D~ 2 = 4 N J ( 2 N  q- 1) (64) 

This agrees with the signal-to-noise ratio of the threshold operator given by Helstrom. 
As shown at the end of Section 4, as N becomes large, i.e., in the classical limit, 
D~ 2 = 2 E / k T ,  where E = N~h~o is the energy in the signal. Unlike the signal-to-noise 
ratio D~ 2 of (61), D~ 2 remains bounded as N---~ 0. 

5.3. Coherent Signal of Known Phase--Arbitrary Signal 

Finally, we seek the operator that maximizes D 2 for a coherent signal of known 
phase at an arbitrary signal level. As before, we wish to compute 

rc n = e-~O~2ple -0~ dy  
O 

But it is apparently not possible to express ~'~1 in a closed form. We can, however, 
compute the matrix element (n [ 7r~1 Im):  

oo 

(n  I ~sz I m )  = 2 f (n  [ e-~ pze-~176 [ m ) dy 
0 

= 2(1 - -  vo)-Z(v0 '~ + vom)-X(n lp l  [ m )  

where we have used the relation 

(exp - - p o y ) ] n )  = {exp[--(1 -- Vo) Vo~y]} In) 

The matrix element (n T p~ I m) was computed in (28). Therefore, 

(n l  ~ l m) = [2vone-NslCN+I)I(VO n -t- Vo~)](m !In !)l /2(tzlN)"-m 

• L ( ~ - ~ ) [ - - N J N ( N  q- 1)] -- ~nm (n >~ rn) (65) 
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The corresponding signal-to-noise ratio is 

D~ 2 = Trplrr~ -~ ~ (n l 7r~ I m ) ( m  ] Pz In} --  1 
n , ~ z  

= 2(1 --  Vo) -1 ~ (Vo ~ + vom) -x I(n 101 }m)] z - -  1 
~ , m  

where the first term represents the sum of  matrix elements along the diagonal and the 
second is the sum over the elements below the diagonal. Substituting for  (n  ] pl l m)  
and using a generating function for the Laguerre polynomials to evaluate the sums, 
we obtain 

Dc 2 = 2  ,~o ~ I~ [N(N + 1)]1/2t-- 1 (66) k=o 1 + Vo k 

where % is the Neumann  number;  % = 1; and E~ = 2 for  all k >~ 1. 
The difference between the signal-to-noise ratio Dc 2 of  a completely known 

signal and the signal-to-noise ratio D~ 2 of  a signal with r andom phase is nonnegative: 

k/2 t 2Ns t D~ 2 - -  D~. 2 = 4 v~ Ik ~> 0 
;~=1 1 + Vo k ~[N(N + 1)]1/2t 

For  a very small signal, D~ ~ of  (66) reduces to 4NJ(2N -1- 1), which is the signal-to- 
noise ratio of  the threshold detector. However,  there are terms of  order  N,  2 with N -1 
dependence that  increases D~ ~ without  bound  as N - +  0. In fact, the matrix element 
(n ] ~r~ I m)  appears to be unbounded  as N ~ 0. We consider this interesting question 
in more  detail next. 

5.4. C o h e r e n t  Signal of K n o w n  Phase at  Z e r o  T h e r m a l  Radiat ion 

When Vo = 0, we recall that  the density operators Pz and P0 become, respectively, 
Pl = I /z)( /z  ] and Po = I 0)(01- Therefore,  

co 

"/7"sl = 2 f [exp(-- ] 0}(0 ly)]  I /z}(/z I [exp(-- ] 0}(0 i y)] dy 
0 

Now consider ~r~z I f ) ,  where t f )  is in ~ .  Expanding the exponent  and noting that  
( 0 ] 0 )  = 1 and (01/~)  = exp( - - [ / z  1~/2), we have 

[exp(--] 0)(01 y)] I/x) = t t~) + [exp(--[/~ ]~/2)](e-Y - -  1) [ 0) 
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Letting (/ ,  I f )  = fox*) exp(--I /* lz/2), we obtain 

If} ~- 2[exp(-- I /x/2/2)] f [f(~*) + (e-~ -- 1)f(0)] 7rsl 
o 

• {1 /x) -t- [exp(-- [ /, le/2)l(e -~ -- 1) [ 0)} dy 

7rs 1 is bounded on 10) and on I f )  such that both f(0) andf(/x*) vanish. But %1 is 
unbounded everywhere else. Clearly, the present theory does not yield a useful 
operator: rr** is neither bounded everywhere nor does it have its domain dense in o~. 

A similar situation exists in the detection of the direction of spin in an example 
introduced by Helstrom. {2) We receive a beam of spin-�89 particles along the y axis, 
and the particles have spin either in the z axis (hypothesis H0) or in the x axis 
(hypothesis Ha). We are to decide between two density operators: 

Po = �89 + ~),  p~ = �89 + ~ )  

where a~ and a~ are the Pauli spin matrices (Dirac, 115) p. 149) 

a ~  [01 10] '  % = [ 1 0  Yl ]  

and I is the two by two identity matrix. 
To compute 7rs 1 , we note that the eigenvalues of P0 are 0 and 1 and the representa- 

tion of e -po~ on the basis where e~ is diagonal is (Friedman, ~29) p. 121) 

Therefore, 

[eo  

f e?] 
qrS1 ~- d y  

o e -U  

and we see that rr~[~] is bounded but ~[o] is not. 
The fact that the present theory does not yield a useful operator in these examples 

shows that the definition of the signal-to-noise ratio D 2 must be reconsidered. We 
recall that D ~ was defined from analogy with the signal-to-noise ratio in the classical 
theory. We note also that the theory encountered difficulty only in physical situations 
that have no classical analog. Apparently the definition of D 2, like some concepts 
of classical mechanics, does not carry over into strictly quantum mechanical 
phenomena. 

6. S U M M A R Y  

The problem of detecting a completely known coherent signal of arbitrary 
frequency in the background of thermal radiation was considered. In particular, 
the detectability limit at optical frequencies was sought, since the corresponding 
result for low frequencies is well known. Although a closed-form expression for the 
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detectability limit was not obtained, an algorithm was derived that enabled the 
calculation of the limit to any accuracy. The method is particularly applicable to 
optical frequencies, where the noise due to thermal radiation is small. The algorithm 
was shown to converge to the known result in the limit of zero thermal radiation. 
Some curves were generated showing the detectability limit. They represent the best 
performance possible without violating the laws of physics and as such are useful 
as a basis for comparing various practical communication systems at optical 
frequencies. 

In addition, the form of an operator that maximizes a signal-to-noise ratio was 
specified. The signal-to-noise ratio was defined in analogy with the classical theory 
and it led to useful results whenever the physical situation had a classical analog. 
In particular, for a coherent signal of random phase, the operator that maximized 
the signal-to-noise ratio was identical to the one obtained by applying the Neyman-  
Pearson criterion. However, in situations that had no classical analog, an operator 
that maximized the signal-to-noise ratio did not exist in the usual sense of quantum 
mechanics. 
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